

Photocatalysis — A New Approach to Processing Methane and Carbon Dioxide

Suman Khatiwada, PhD Co-Founder and CTO Syzygy Plasmonics

ARPA-E REMEDY Workshop

October 20, 2020

Introduction/Background

Personal Background

- PhD in Materials Science & Engineering. Rice University, 2014.
- 7 granted patents: Li-ion batteries, dissolvable structural materials, solid propellants, etc.

Organization's background and area of expertise

Syzygy Plasmonics. Launched 2018. Team of 24.

- Photochemical reactors to electrify chemical manufacturing
- Product focus: Small-scale, onsite H₂ generation
- Technology: Photocatalytic steam methane reforming, dry methane reforming (CO₂ to value), ammonia decomposition
- Funding: Venture Capital, ARPA-E, NSF SBIR

Artistic rendition of Syzygy's 500 kg/day of H₂ production system for fuel-cell applications

Syzygy's photocatalyst technology

WE USE LIGHT FROM LED TO POWER CHEMICAL REACTIONS

Syzygy's Antenna-Reactor photocatalyst at work

Syzygy's photocatalyst technology

ARTICLES https://doi.org/10.1038/s41560-019-0517-9

Light-driven methane dry reforming with single atomic site antenna-reactor plasmonic photocatalysts

Halas et. al. Jan 2020

Quantifying hot carrier and thermal contributions in plasmonic photocatalysis

Halas et. al. 2018

New science:
Photocatalyst
lowers thermal
activation barrier

Published in World's Premier Scientific Journals

Photocatalysis

Thermocatalysis

Syzygy's photo-chemical reactor technology

Cell based design leads to a modular, scalable product

Cell – The smallest functional unit

Reactor – Multiple cells contained within an enclosure.

Reactor Bank - Multiple reactors combined together.

System - Our product. The reformer and other components.

Primary Enabling Technologies:

- 1. Antenna-Reactor photocatalyst
- 2. New LED technologies
- 3. Innovative Cell and Reactor designs

Photo-chemical reactors to process CH₄ and CO₂

- Chemical Reaction #1: Photocatalytic Steam Methane Reforming (P-SMR)
 - ightharpoonup CH₄ + H₂O + electricity \rightarrow CO + 3H₂

► Goal by Q1 2021: Multi-cell reactor producing 5 kg/day H₂ at 40% energy efficiency (buildout in progress)

Photo-chemical reactors to process CH₄ and CO₂

- Chemical Reaction #2: Photocatalytic Dry Methane Reforming (P-DMR)
 - ightharpoonup CH₄ + CO₂ + electricity ightharpoonup 2CO + 2H₂ (syngas at C:H = 1)

► Goal by Q1 2021: Multi-cell reactor processing ~20 kg/day CO₂ at 40% energy efficiency (buildout in progress)

REMEDY program specific notes

- What's needed to apply Syzygy's technology developments to methane emissions?
 - Application-specific data
- What types of emission sources could the technology potentially address?
 - Ambient or high temperature methane streams; gas escaping from point sources, gas going to flare
 - Wide range of concentrations and flow rates
 - Mix-streams of methane and CO₂
- What's needed to make a system, and where are there gaps:
 - "Packaging" the system
- What would a team need to address gaps/succeed?
 - Application—specific
 - Commercial/Market insights

Contact Information

TREVOR BEST
CHIEF EXECUTIVE OFFICER

SUMAN KHATIWADA, PhD CHIEF TECHNOLOGY OFFICER

806-470-5779 trevor@plasmonics.tech

443-857-2654 suman@plasmonics.tech

www.plasmonics.tech